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Abstract: With the fast increase of multimedia traffic in Internet of Things (IoT) applications, IoT traffic now requires very
different Quality of Service (QoS). By extensive statistical analysis of traffic flow data from a real world network, the authors find
that there are some latent features hidden in the multimedia data, which can be useful for accurately differentiating multimedia
traffic flows from the QoS perspective. Under limited training data conditions, existing shallow classification methods are limited
in performance, and are thus not effective in classifying emerging multimedia traffic types, which have truly entered the era of
big data and become very completed in QoS features. This situation inspires us to revisit the multimedia traffic classification
problem with a deep learning (DL) approach. In this study, an improved DL-based multimedia traffic classification method is
proposed, which considers the inherent structure of QoS features in multimedia data. An improved stacked autoencoder model
is employed to learn the relevant QoS features of multimedia traffic. Extensive experimental studies with multimedia datasets
captured from a campus network demonstrate the effectiveness of the proposed method over six benchmark schemes.

 Nomenclature
K denote the total output value number of corresponding QoS

characteristics
xk denote the output value of QoS characteristics
X represent a set including all possible outputs
I(xk) denote the information content of xk
p(xk) denote the probability density function of xk
N denote the number of inputs
D denote the number of units in the output layer
HD denote the number of hidden units
M denote a matrix that consists of the weight vectors
Rd represent an N-dimensional real number Euclidian space
x(i) specify the ith training sample
F( ⋅ ) denote a feature-extracting function
W1 represent an encoder weight matrix
b represent an encoder bias vector
W2 denote a decoder weight matrix
c denote a decoder bias vector
γ denote the weight
ρ represent a probability and equals to a small value close to

zero (set to 0.005 in this paper)
ρ^ j represent the average activation of hidden unit j

1 Introduction
In Internet of Things (IoT), multimedia communications have
gained great momentum in recent years. For example, in video
surveillance and smart homes, smartphones/TVs are able to
communicate with each other via heterogeneous wireless networks
(e.g. WiFi and 4G) [1–3]. More people have paid attention to
research on Quality of Service (QoS) for multimedia
communications in the IoT [4–6], in contrast to traditional wireless
networks [7–10], where various models are developed to facilitate
resource allocation and traffic control and network protocols
developed for end-to-end QoS provisioning. To effectively
guarantee end-to-end QoS for multimedia applications, it is
important to obtain accurate QoS information of traffic flows,

which will be helpful information for Internet Service Providers
(ISPs) to make better QoS operation decisions. Especially, it is a
great challenge to effectively allocate limited network resources for
emerging multimedia traffics in future generation of networks (e.g.
the fifth generation wireless networks (5G)), that are becoming
increasingly ‘big’ and have many different QoS requirements since
they cannot be handled effectively by the traditional multimedia
processing and analysis methods, in spite of that big data can bring
great opportunities [11–13].

With the proliferation of multimedia applications (such as
multi-view video, interactive video systems, real-time surveillance,
and 3D and 360° videos), multimedia has become the ‘biggest big
data’ and can offer rich, important information for service and
network operators [11, 12]. Compared with big data, multimedia
big data is much more complex, which involves more QoS factors
since many multimedia traffic flows need more strict QoS
requirements. Multimedia big data is composed of partially
unknown complex structures, which is difficult to represent and
model. Especially some factors involve time statistics, spatial
statistics, human factors, and inter-view correlations with
structured singularities. Furthermore, there is a higher level of
complexity involved in understanding and cognition of multimedia
big data since network parameters usually do not reflect high-level
semantics [11]. Therefore, multimedia big data can offer more
hidden characteristics than traditional big data. In the field of end-
to-end QoS for multimedia traffic, more effective potential patterns
may be found by utilising multimedia big data. To differentiate
multimedia traffic flows at different priority levels for effective
end-to-end QoS guarantee, it is important to analyse QoS
characteristics of multimedia traffic from the perspective of
multimedia big data.

In this paper, a deep learning (DL) approach is utilised to learn
the hidden patterns of QoS characteristics from unknown complex
structures of multimedia big data. We focus on multimedia traffic
classification, with the objective to extract such QoS information
from captured multimedia data, according to which different
multimedia traffics can be differentiated into different priority
levels. Traffic classification has gained more attention in the
research community, with the rapid development of network traffic
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and user's individual requirements. However, typical classification
methods are not effective for multimedia big data due to several
reasons as follows:

i. They mainly depend on acquired traffic data, and cannot
identify the inherent features hidden in the unprecedented
volumes of non-traditional data.

ii. They often classify traffic based on linear division without
considering the fact that the related QoS features exhibit great
diversity in type and complexity, as well as the relationship
among various parameters.

iii. They are often built on top of direct features, which are often
much restrictive in capturing the complex multimedia QoS
features with domain-specific knowledge and large spatial
variability.

iv. The volume of multimedia traffic is growing rapidly, in which
considerable potential information may be hidden and needs to
be effectively extracted [14].

The recent developments on DL open an exciting new era in
pattern recognition and machine learning [14–19], with wide
applications in multimedia computing and communications [20–
22]. DL offers great potential to extract the inherent QoS related
features of multimedia data and discover the QoS feature structure
without the need for prior knowledge, which are usually abstract
and invariant. It has been recognised that the machine learning
methods with multiple layers of processing can yield higher
classification accuracy than those traditional, shallower classifiers
[23]. In this paper, we introduce a DL-based QoS related feature
extraction scheme for multimedia traffic classification. This paper
is focused on utilising the autoencoder (AE) to learn the QoS
related features of multimedia traffic with an unsupervised learning
approach. Our main contributions include

i. To the best of our knowledge, this is the first work on
exploiting multimedia traffic QoS related features for
classification, with a deep architecture model in which AEs are
used as building blocks.

ii. To enhance the learning process and to reduce the training
error caused by a very small number of training patterns, we
improve the architecture of the AE and propose a modified DL
approach of multimedia data from the QoS perspective.

iii. We validate the performance of the proposed DL approach
with extensive multimedia data captured from a campus
network over a long period of time, and with comparison to six
existing representative classification schemes. The proposed
method is shown to outperform all the six existing schemes
with considerable gains with respect to all five performance
metrics.

The remaining of this paper is organised as follows. Section 2
presents the related work in the literature. Section 3 introduces the
dataset and analyses the related typical QoS characteristics, and
selects new QoS characteristics for differentiating multimedia
traffics. Section 4 presents an improved DL approach to
multimedia big data. Experimental results are presented and
discussed in Section 5. Finally, Section 6 concludes this paper.

2 Related work
With the increasing popularity for multimedia services in the IoT,
multimedia communications play an increasingly larger role in the
IoT applications. Research on QoS in multimedia communications
in the IoT has gained attention in recent years [1–6]. In [2], the
authors propose a novel vehicle network architecture in the smart
city scenario to deliver delay-tolerant and delay-sensitive traffic
requiring very different QoS. To ensure the quality of multimedia
applications, Karaadi et al. [3] design a quality aware IoT
architecture for multimedia IoT applications. Addressing the effect
in heterogeneity of applications, services, and terminal devices, and
the related QoS issues among them, the work [4] proposes a traffic
flow management policy. To allocate cache capacity among
content-centric computing nodes and handle the transmission rates

under a constrained total network cost, the authors in [5] propose a
suboptimal dynamic approach, which is suitable for the IoT with
frequently content delivery. Furthermore, an IoT-based architecture
is proposed in [6] for multi-sensorial media delivery to TV users in
a home entertainment scenario, and Song and Tjondronegoro [24]
utilises statistical non-linear regression analysis to build the models
with a group of influencing factors as independent predictors,
which include encoding parameters, bitrate, video content
characteristics, and mobile device display resolution.

Big data attracted an upsurge of research recently, which may
provide the great potential to obtain valuable knowledge from the
exponential growth and wide availability of non-traditional data
[14]. Big data has been defined by volume, velocity, veracity, and
variety, which indicate that the data not only has a large data
measure, but also has different modalities and types for a given
object [12, 13]. The emergence of IoT-based multimedia has
challenged many of the traditional QoS feature analytic methods.
Comprehensive surveys of big data can be found in [12, 13]. The
authors in [25] show that accurate and timely traffic flow
information is helpful in improving traffic operation efficiency, and
proposed a novel traffic flow prediction method based on deep
architecture models with big traffic data. In [26], the authors
develop a novel community-centric framework for community
activity prediction based on big data analysis.

DL, which is a type of machine learning method and tries to
hierarchically learn deep features of input data with very deep
neural networks (NNs), has drawn a lot of academic and industrial
interest [27, 28]. In DL algorithms, multiple-layer architectures or
deep architectures are adopted to extract inherent features in data
from the lowest level to the highest level, by which huge amounts
of potential structure can be discovered in data and proper features
can be formulated for pattern classification in the end. Since deep
models can potentially lead to progressively more abstract and
complex features at higher layers, deep models can give a better
approximation to non-linear functions than shallow models because
more abstract features are generally invariant to most local changes
of the input. Generally, deep belief networks (DBNs), deep
Boltzmann machines (DBMs), SAEs, and stacked denoising AEs
(SDAEs) are the typical deep NN architectures. Furthermore, the
layer-wise training models have a bunch of alternatives such as
denoising AEs (DAE), convolutional NNs (CNNs), pooling units,
AEs, and restricted Boltzmann machines (RBMs).

DL and multimedia big data are both active and
interdisciplinary research hotspots [11]. DL can learn high-level
features from low-level ones with a deep NN, which can exploit
the proper features for classification [29]. Since multimedia big
data could offer a great potential to obtain valuable knowledge, the
authors in [14] show that DL is playing a key role in providing big
data predictive analytic solutions, and has also been successfully
applied in big data analytics. In [15–19], DL is shown highly
effective for handing the channel state information (CSI) data for
indoor localisation. For video sequence classification, the authors
in [30] propose a novel tensor decomposition method in which
general tensors are used as input for video sequence classification.
The method projects the original tensor into subspaces spanned by
spatial basis matrices in the proposed formulation. By exploring
the motion relationship of neighbouring blocks and the coding cost
characteristic, Fan et al. [31] categorise prediction unit (PU) into
one of three classes, namely, motion-smooth PU, motion-medium
PU and motion-complex PU. By exploiting traffic patterns and
Variable Bit-Rate encoding, Dubin et al. [32] present a new
algorithm for encrypted HTTP adaptive video streaming title
classification. The algorithm shows that an external attacker can
identify the video title from video HTTP adaptive streams sites,
such as YouTube. By training a DBN, the work in [33] defined a
deep architecture for traffic flow prediction that learned features
with limited prior knowledge. In [34], a discriminative deep model
was trained to classify the features in a blind image quality
assessment model. In [35], a DL scheme was proposed to infer
possible diseases. To effectively model the interaction
relationships, the deep NNs and a latent structural support vector
machine (SVM) were jointly utilised in [36], while in [37], the
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authors built adversaries for DL systems applied to image object
recognition.

Multimedia big data provide unprecedented opportunities for
understanding real-world situations [11]. However, it is an
interdisciplinary research field to integrate machine learning (e.g.
DL), big data, multimedia traffic modelling/analysis/control, and
QoS feature together. Considering that DL can exploit the proper
features for classification since it can learn high-level features from
low-level ones with a deep NN, we choose SAEs as the
corresponding deep architecture in this paper [15–17, 25, 38, 39].
Our work presented in this paper makes a step forward in applying
DL for video traffic classification in this important topic area.

3 Dataset analysis
To further study the related QoS characteristics of multimedia
traffics, we collect the typical multimedia traffic traces in a college
campus network to build a basic dataset with Wireshark, a widely-
used network protocol analyser [40]. The dataset is comprised with
eight types of multimedia traffic flows, including video based on
http, PPstream video, QQ video, sopcast video, CCTV online
video, xunlei video, youku standard-definition video (youku-b),
and youku high-definition video (youku-g); (The websites for these
multimedia applications are http://xyq.163.com/, http://
www.QQ.com, http://www.cntv.cn/, http://www.uusee.com/,
PPStream is a network television software, http://dl.xunlei.com/,
http://www.sopcast.cn, and http://www.youku.com/.) each traffic
flow is 35 min long, collected with a machine with an AMD
A6-7000 Radeom processor during day/night times in the summer
of 2015.

When we collected each type of the multimedia traffic traces,
we kept only one type of multimedia traffic running without other
types multimedia traffic in the background. Note that this is a
typical scenario when a single user is viewing a video on his/her
desktop computer (i.e. usually a user is not viewing multiple videos
simultaneously). However, there may be other users viewing
multimedia contents on other computers in the lab or other parts of
the campus network, while the multimedia traffic trace is recorded.
Wireshark recorded detailed information of the multimedia traffic
flows, such as the five-tuples (including, source/destination IP
address, source/destination port, and protocol), the arrival time, the
direction, the packet size and so on. We consider both uplink and
downlink directions of the traffic data.

For better exposition in the remainder of this paper, we first
provide the following definitions. The notation used in the
remaining part of this paper is summarised in the Nomenclature
section.

• Sub-flow: a sub-flow consists of packets with the same five-
tuples and from the same application. Its duration should be
longer than 0.1 s.

• pdf-entropy: the entropy of the probability density function
(PDF) is defined as follows:

H(X) = E[I(X)] = − ∑
k = 1

K
p(xk)log2 p(xk), (1)

where K denotes the total output value number of the
corresponding QoS characteristics, xk denotes the kth output
value of the QoS characteristics, X = [x1, x2,…, xk,…, xK]
represents a set including all possible outputs, I(xk) is the
information content of X, and p(xk) denotes the PDF of xk.

• packet-big: a packet is marked as ‘big’ if its size is larger than
800 Bytes.

• ipchange-count-pdf-entropy: the entropy of PDF for the count
computed by changing between different IP addresses.

• flow segment: indicates each entire sub-flow.

For multimedia traffic classification, feature plays an important
role and can greatly affect classification performance. In practice,
since the QoS requirements of multimedia traffic are complicated
in nature, QoS feature extracted should be more invariant and
robust to most local changes of the input. Generally, the features at
a lower level have poor classification performance since it is too
simple; the features at a higher level may have the ability of
acquiring a better classification performance since the deeper
features can preserve abstract and invariant information. We find
that the eight types of multimedia traffic flows cannot be
effectively classified with simple relevant QoS features, such as
protocol, port, packet size, Inter-Arrival Time (IAT) and so on.
However, it is possible to discover the more abstract inherent
feature structures in a huge amount of simple related QoS features.
By analysing related works, we select 16 types of related QoS
characteristics, which are presented in Table 1, to describe the
captured multimedia traffic traces. 

To better understand all the captured traffic traces, the
normalised logarithmic values of all related characteristics are
plotted in Figs. 1–3, respectively. For example, in Fig. 1a, the x-
axis is the normalised logarithmic value of uplink-bytes-count, and
the y-axis is the normalised logarithmic value of the downlink-rate-
packet-big-PDF-entropy. To make the figures more readable, we
plot only one out of every ten points in the figures. From Figs. 1–3,
the distributions of normalised logarithmic value of the related
characteristics can be compared easily for the captured traffics. 

As shown in Fig. 1a, the entire distribution area cannot be
clearly divided into subareas each containing one types of points,
since all of traffic traces are out of order and mingled, and cannot
be clearly distinguished from each other with the two features (i.e.
the normalised logarithmic value of uplink-bytes-count and
downlink-rate-packet-big-pdf-entropy). In particular, ‘http’ is

Table 1 Sixteen types of related QoS characteristics
No. Name Description Bayes
1 downlink-uplink-packets-count-ratio ratio of packet number between downlink and uplink
2 downlink-uplink-bytes-count-ratio ratio of byte number between downlink and uplink
3 downlink-subflow-count number of sub-flows from downlink
4 downlink-different-ipcount number of different IP addresses from downlink
5 downlink-rate-packet-pdf-entropy entropy of PDF of packet rate from downlink
6 downlink-rate-packet-big-pdf-entropy entropy of PDF of big packet rate from downlink
7 downlink-rate-bytes-pdf-entropy entropy of PDF of byte rate from downlink
8 downlink-rate-bytes-big-pdf-entropy entropy of PDF of big byte rate from downlink
9 downlink-packetsize-pdf-entropy entropy of PDF of packet size from downlink
10 downlink-ipchange-count-pdf-entropy entropy of PDF for the count computed by changing between different IP addresses
11 downlink-interval-pdf-entropy entropy of PDF of packet arrival time interval from downlink
12 downlink-flow-segment-time-pdf-entropy entropy of PDF of packet arrival time interval from downlink
13 downlink-flow-segment-rate-pdf-entropy entropy of PDF of flow segment rate from downlink
14 downlink-flow-segment-interval-pdf-entropy entropy of PDF of flow segment arrival time interval from downlink
15 uplink-packets-count number of packets from uplink
16 uplink-bytes-count number of bytes from uplink
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mixed with four traffic traces (i.e. ‘PPstream,’ ‘xunlei,’ youku-b,
and youku-g) in Fig. 1a; ‘QQ’ is mixed with three traffic traces
(‘sopcast,’ ‘CCTV,’ and youku-b) in Fig. 1a; and ‘xunlei’ is mixed

with five traffic traces (‘http,’ ‘PPstream,’ ‘sopcast,’ ‘CCTV,’
youku-b, and youku-g), as shown in Fig. 1a.

However, it is obvious that ‘http’ can be clearly distinguished
from the others as shown in Fig. 1b. In Fig. 1b, ‘http’ has the

Fig. 1  Distributions of normalised logarithmic values of related QoS characteristics for eight types of traffic flows
 

Fig. 2  Distributions of normalised logarithmic value of related QoS characteristics for five types traffic flows
 

Fig. 3  Distribution of normalised logarithmic values of related QoS characteristics for four types traffic traces
 

148 IET Netw., 2019, Vol. 8 Iss. 3, pp. 145-154
© The Institution of Engineering and Technology 2018



smallest value among all with respect to downlink interval pdf
entropy, i.e. its distribution of downlink interval pdf entropy is
obviously different from ‘PPstream,’ ‘xunlei,’ youku-b, and youku-
g. Nevertheless, ‘PPstream,’ ‘xunlei,’ youku-b, and youku-g can be
distinguished from each other according to the distribution of
downlink ipchange count PDF entropy and downlink interval PDF
entropy.

From the distribution of normalised logarithmic value of
downlink different ipcount and downlink rate bytes big PDF
entropy as shown in Fig. 2a, ‘xunlei’ and ‘QQ’ can be easily
distinguished among the five types traffic traces (i.e. from
‘PPstream,’ ‘sopcast,’ and ‘CCTV’), and ‘Sopcast’ can be easily
distinguished from ‘PPstream’ and ‘CCTV.’ In Fig. 2b, ‘PPstream’
has obvious differences from ‘CCTV’ in the distribution of
normalised logarithmic value of downlink uplink packets count
ratio and downlink flow segment time PDF entropy.

From the distribution of normalised logarithmic value of
downlink rate bytes PDF entropy and uplink bytes count, as shown
in Fig. 3a, youku-b exhibits obvious differences from youku-g. In
Fig. 3b, ‘sopcast’ can be easily distinguished from ‘CCTV’ based
on the distribution of normalised logarithmic value of downlink
different ipcount and downlink rate bytes PDF entropy.

In conclusion, it is very different to distinguish the eight traffic
traces according to just one feature. But different traffic flows have
different features with respect to different related QoS
characteristics. This observation indicates that related QoS
characteristics should have some potential relationships among
them, by which the traffic flows can be effectively distinguished.
Multimedia big data could provide more potential information to
find the inherent structure for multimedia traffic classification.

4 DL approach to multimedia big data
In this paper, a promising classification method, a DL approach to
multimedia big data based on QoS characteristics (termed
DeepClass), is introduced for multimedia traffic QoS classification.
The proposed method exploits a stacked AE (SAE) model, which
creates a deep network by utilising AEs as building blocks. It has
been shown that the SAE model can extract different levels of
potential classification features in a broad area of applications and
can discover a huge amounts of inherent structures in the features

without prior knowledge [25]. We describe how to incorporate the
SAE model into a traffic related QoS feature classification
framework, which is complicated in nature to be represented.

4.1 Autoencoder

The AE is typically implemented as a one-hidden layer NN, which
attempts to reproduce its input. It is used as building blocks to train
deep networks, where the target output is the input of the model
and each hidden layer is associated with an AE that can be trained
separately. The amount of output nodes is equal to the amount of
input nodes, and one input node is trained at a time. In general, an
AE has one input layer, one hidden layer, and one output layer [15–
17, 25, 38, 39].

An AE is composed with four parts as follows: (i) the input
layer, (ii) the output layer, (iii) one or more hidden layers, and (iv)
an activation function [38]. The schematic structure of an AE with
three fully-connected hidden layers is shown in Fig. 4. The input
layer is visible with N inputs, and the output layer is a
reconstruction layer with D units. In our design, the hidden layer is
invisible with HD units. That is, we will utilise an AE with N input
neurons and HD hidden neurons. Each of the hidden units is
connected with each of input neurons in the input-to-hidden layer
of an AE (i.e. fully connected), as shown in Fig. 5. Therefore,
every single hidden unit has N connections from the input layer,
which as a whole both filter away information from some input
data and amplifies some others. Therefore, we can regard the
learning process of an AE with HD hidden units as a learning
process with HD such filters. 

In this paper, we view the weight vectors as a matrix M, which
has N entries. For the entire network, we have HD such matrices.
Then for each matrix M, we use the intensities of N related QoS
features of the traffic to reflect the N connection. By extracting an
abstract feature for each hidden unit, some deeper features of the
traffic can be acquired. Assuming that the overall QoS
requirements can be represented by a vector consisting of the
corresponding QoS parameters, which can be represented by a real
number that is bounded in the range of [0, 1] by processing. We
specify the ith training sample x(i) ∈ Rd, where i is an integer that
represents the index of traffic, and Rd represents an N-dimensional
real number Euclidian space, which consists of N QoS parameters.
The set of training samples can be written as follows:

x = {x(1), x(2), x(3),…} . (2)

Denoting F( ⋅ ) as a feature-extracting function, each input x(i) from
the set of training samples can be encoded into a hidden feature
vector F(x) based on the encoder activation functions [25], as
follows:

F(x) = F(W1x + b) = 1
1 + exp( − (W1x + b) , (3)

where W1 and b represent an encoder weight matrix and an encoder
bias vector, respectively. Then, the hidden representation F(x) is
mapped from the hidden feature space back into a reconstruction
G(F(x)) of the input space based on the decoder activation
functions, as follows:

G(F(x)) = G(W2F(x) + c) = 1
1 + exp( − (W2F(x) + c) , (4)

where W2 and c denote a decoder weight matrix and a decoder bias
vector, respectively.

By attempting to reproduce the input of the model according to
the lowest possible reconstruction error L(x(i),G), the set of
parameters of the encoder and mapping are learned simultaneously.
In summary, the basic AE is a process to find a set of parameter
vectors to minimise the reconstruction error, as follows:

Fig. 4  Schematic structure of an AE with three fully-connected hidden
layers

 

Fig. 5  Input-to-hidden layer structure of an AE
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P(W1,W2, b, c) = arg min
{P}

L(x(i),G(x(i)))

= arg min
{P}

1
2∑i = 1

N
∥ x(i) − G(x(i)) ∥2 .

(5)

This optimisation problem (5) is usually solved with the stochastic
gradient descent method. As a result, the model parameters can be
obtained. Considering that sparsity usually exists in the QoS
characteristics of multimedia [41], it seems that the autoencoder
should achieve a good performance by considering the sparse
representation of the hidden layer [25]. Here, we directly penalise
the output of the hidden layer activations to obtain sparsity in the
representation with the Kullback–Leibler (KL) divergence [25].
Through combining the objective function with a sparsity
constraint, we can generate a new objective function, and the new
problem can be solved by the back-propagation (BP) algorithm, as
follows [25]:

SAO = L(x(i),G(x(i))

+γ∑
j = 1

HD

ρlog ρ
ρ^ j

+ (1 − ρ)log 1 − ρ
1 − ρ^ j

,
(6)

ρlog ρ
ρ^ j

+ (1 − ρ)log 1 − ρ
1 − ρ^ j

= 0, if ρ = ρ^ j, (7)

where γ and HD denote the weight and the number of hidden units,
respectively, ρ is a probability and equals to a small value close to
zero (set to 0.005 in this paper), and ρ^ j represents the average
activation of hidden unit j, defined as

ρ^ j =
1

N∑i = 1
N F j(x(i))

. (8)

4.2 Stacked AEs

An SAE model is constructed by stacking AEs, in which the input
and hidden layers of AEs are stacked together in a layer-by-layer
manner. This model is used to form deep related QoS
characteristics of multimedia flow data. First, the AE maps inputs
in the 0th layer to the inputs in the first layer. After training the first
layer AE, we can train subsequent layers with the output of the
previous layer. At last, the decoder of the last layer is discarded,
and we obtain the weights between the former and last layers by
incorporating the input-to-hidden parameters. When we implement
the subsequent classifier as a NN that aims to generate its input, we
can adopt a fine-tuning operator that adjusts the parameters
throughout the entire network when the classifier is trained.

To enhance the learning process or reduce the training error
caused by a very small number of training patterns, we improve the
architecture of the AE based on [42]. By stacking hierarchically
multiple improved AEs, a deep network is thus created, which is
illustrated in Fig. 6. 

4.3 Classifying with multimedia related QoS characteristics

It is a challenge to extract the potentially related QoS features,
since the multimedia traffic traces belong to the same class and
often exhibit different related QoS characteristics under different
network conditions. To handle the multimedia big data, we propose
to utilise the DL approach to extract the inherent invariant
characteristics for effective classification. In this paper, we firstly
use an SAE to obtain the QoS characteristics, where the deep
network is trained with the BP algorithm, and then we accomplish
the classification by constructing a logistic regression classifier at
the top layer.

In particular, we can obtain different levels of deep
characteristics by adopting a different number of layers. Based on
the work in [14, 23, 25], the training procedure is designed and
described as follows:

Step 1: By solving the optimisation problem with objective
function (6), the first layer is trained as an AE, where the inputs are
the training samples.
Step 2: As the former step, the second layer is trained as an AE, for
which its inputs directly come from the output of the first layer.
Step 3: The above procedure in Step 2 is repeated, until the last
layer is trained.
Step 4: The input to the classification layer consists of the output
from the last layer. Then its parameters are randomly initialised.
Step 5: Based on the BP algorithm, the parameters of all the layers
are adjusted in a supervised manner.

The procedure of the proposed algorithm is stated as follows:

Step 1: Initialise the related parameters, including the desired
number of hidden layers, the weight matrices, the bias vectors and
so on.
Step 2: Execute the operations to pre-train the SAE, including
training the hidden layers operator, while the inputs of the first
hidden layer are the training samples. The inputs of the (k+1)th
hidden layer are the outputs of the kth (k > 1) hidden layer.
Through solving the optimisation problem, we can obtain the
encoding parameters for the (k+1)th hidden layer.
Step 3: The fine-tuning stage: The encoding parameters are
initialised randomly, and then the BP algorithm is utilised to fine
tune the parameters throughout the entire network in a top–down
fashion.

The flowchart of the proposed QoS class classification is
described in Fig. 7. First, we capture the multimedia flow data
from a live network as raw data. Through analysing the raw data,
we can generate the related QoS features. By selecting features and
operating normalisation, we can acquire the related QoS
characteristic vectors. After obtaining the input dataset, we setup
and train a SDAE, including pre-training and generating the AE
network. When the training stage is over, we operate the fine-
tuning procedure, where we use the SDAE to initialise and train a
feed forward NN. To utilise the SAE network for multimedia
traffic classification, a logistic regression layer is added at the top
layer. Therefore, a deep architecture model is generated by
combining the SAEs with the logistic regression layer for
multimedia traffic classification. Finally, the output result is
generated. 

The performance of the proposed DL-based QoS class
classification framework will be evaluated with real multimedia

Fig. 6  Deep network architecture and the improved layer-wise training of
SAEs
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datasets captured from a campus network in the next section, along
with comparison with several benchmark schemes.

5 Experimental study
In this paper, the proposed approach is applied to the dataset
collected from the campus of Anhui Normal University's Wuhu,
China campus in the experiments, which is comprised with eight
natural categories of multimedia traffic as shown in Table 2. Each
of traffic trace is captured from a 35-min traffic flow. In the
experiments, the dataset is divided into two parts: the first part is
adopted as the training set, and the second part is used as the
testing set. To obtain the best architecture of an SAE network, we
perform a grid search runs in the experiment, where the hidden
layer size is chosen from 1 to 4, and the number of hidden units is
chosen from 10 to 200. Eventually we obtained the best
architecture configuration, which is presented in Table 3. 

For QoS feature classification, our best architecture consists of
four hidden layers, and the number of hidden units in each hidden
layer is 40. Our results indicate that the number of hidden layers
should be neither too large nor too small. For a statistically
accurate evaluation, the experiments are conducted over 50 runs.
Considering that the number of hidden units determines the quality
of QoS features, we perform the experiments with different
numbers of hidden units while keeping the other parameter settings
fixed. The experimental results are presented in Fig. 8. 

In Fig. 8, it can be seen that the number of hidden units has a
considerable impact on classification accuracy. When the number
of hidden units is 40, the accuracy of the proposed method is up to
99.75%. However, when the number of hidden units grows to 160,
the accuracy of the proposed method shows a large drop to 12.5%.
In fact, other parameters (i.e. the number of hidden layers and the
batchsize) also affect the performance of the proposed method.

Through extensive experimental studies, we select the parameters
for the proposed method, which are given in Table 3. We find that
the performance of the proposed method stops to improve after
four layers with 40 hidden units due to overfitting. There is a
serious issue concerning AEs in that if the hidden units are the
same size or greater than the input units, an AE could potentially
learn the identity function and become useless (e.g. just by copying
the input) [39].

To comprehensively and quantitatively evaluate the
performance of our method, five performance indexes are used for
performance measurement in this paper, which are (i) the overall
accuracy (OA), (ii) accuracy (Ac) [23], (iii) recall (R), (iv) precision
(P), and (v) F1-measure(F1). These performance metrics are
defined as

OA =
∑i = 1

K Ti

∑i = 1
K Si

(9)

Ac =
TP + TN

TP + FP + TN + FN (10)

R = TP
TP + FN (11)

P = TP
TP + FP (12)

F1 = 2 × P × R
P + R , (13)

where K denotes the number of types of multimedia traffics, Ti
represents the number of multimedia traffics that belong to the type
i traffic and are correctly identified by the classifier, Si is the
number of traffics that belong to the type i traffic in the dataset, TP
(true positive) denotes the number of traffics that are identified
correctly by the classifier and are the correct traffics indeed, FP
(false positive) represents the number of traffics that are identified
correctly by the classifier and are the incorrect samples indeed, TN
(true negative) denotes the number of traffics that are identified
incorrectly by the classifier but are the incorrect traffics indeed, FN
(false negative) denotes the number of traffics that are identified
incorrectly by the classifier and are the correct samples in fact.

The performance of the proposed method is compared with six
existing methods, including (i) the BP neural networks (denoted as
BP NNs), (ii) the K-nearest neighbour (denoted as K-NN) [43],
(iii) the random walk (denoted as RW) forecast method, (iv) the
Naive Bayes method, (v) the radial basis function (denoted as

Fig. 7  Flowchart of the proposed QoS class classification scheme
 

Table 2 Components of the experimental dataset
Traffic type No. traffic

flows
Data amount,

GB
video based on http 150 3.11
PPstream video 150 7.37
QQ video 150 7.28
sopcast video 150 7.38
CCTV online video 150 3.09
Xunlei video 150 11.09
Youku standard-definition video 150 1.83
Youku high-definition video 150 3.52
 

Table 3 Parameters used for running experiments in the
structure of an SAE network
Parameter Value
number of hidden layers 4
number of units in the hidden layers [40, 40, 40, 40]
batchsize 1000
total epoches 400
 

Fig. 8  Impact of the number of hidden units in terms of accuracy
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RBF) NN model, and (vi) the SVM method [44], in terms of OA,
accuracy [23], precision, recall, and F1-measure. Different from the
existing works [43, 44], we focus on the new research problem in
this paper, which is to utilise the DL method and the multimedia
QoS characteristics to effectively classify the multimedia traffic big
data. The experimental results are presented in Table 4, which are
conducted over 50 runs in our experiments.

We compared the overall accuracy (i.e. OA) of the proposed
method with BP NN, K-NN, RW, Naive Bayes, RBF NN, and
SVM methods in Table 4. Among these seven competing methods,
our proposed method achieves statistically the highest overall
accuracy of 99.75%. The overall accuracy of BP NN, K-NN, RW,
Naive Bayes, RBF NN, and SVM are 96.86, 92.1, 95.34, 88.86,
94.63, and 96.16%, respectively. The reason for this phenomenon
is that small differences between the QoS features and QoS
requirements can cause a bigger relative error when the number of
traffic flows is small. Since the depth of QoS features has an
impact on classifying multimedia traffic data, it seems that the
method with deeper features can often easily achieve higher
classification overall accuracies than methods with shallow
features. Especially, we are more focused on classification results
with a limited number of traffic flows in fact. Our proposed method
can utilise the deep architectures (i.e. multiple-layer architectures)
to discover the intrinsic QoS features at different levels, and can
acquire a huge amounts of potential structures in QoS features.
Like other DL algorithms, our proposed method can potentially
generate progressively more complex and abstract features at
higher layers, which are generally invariant when the input is,
changed locally [23]. The proposed method can also represent
traffic QoS features without prior knowledge [25], and it
outperforms all other six classification methods with gains ranging
from 2.89% (over BP NN) to 10.89% (over Naive Bayes).

The recognition performance of K-NN is influenced by the
training set samples in the classification process, since it only
calculates the ‘nearest’ neighbour samples. The RW method

utilises a simple baseline to classify traffic, so that it has a poor
performance in classifying traffic with complex QoS features. The
training dataset has a considerable impact on BP NN, RBF NN,
Naive Bayes, and SVM in the learning stage, which are dependent
on the specific characteristics and have different recognition effects
for different traffic types. We find the NN and SVM methods can
achieve a pretty good performance for multimedia traffic
classification. In Table 5, we can see that the accuracy of our
proposed method is over 99.9% for all the eight types of traffics.
Hence, our proposed method is highly effective for classifying
multimedia traffic according to their QoS requirements. 

Fig. 9 provides a visual display of the performance with respect
to recall (i.e. R) achieved with the proposed method, BP NN, K-
NN, RW, Naive Bayes, RBF NN, and SVM. It can be seen that the
proposed method outperforms all the other six existing methods in
term of recall. Note that the same observation is made with respect
to all the other performance metrics. Each recall value for each
method in the table is the average of 50 experiments. The proposed
method achieves a better recall performance when compared with
BP NN, K-NN, RW, Naive Bayes, RBF NN, and SVM, and is
promising and effective with respect to recall performance. In
terms of classification accuracy, BP NN and RBFNN's
performance stop to improve after three layers due to overfitting,
while the proposed method keeps improving as the number of
layers is increased till as deep as we tested. 

In Table 6, it is shown that our proposed method outperforms
all the other six methods; it achieves the highest value in terms of
precision. Our proposed method is also highly stable in term of
precision, with precision values ranging from 0.99750 to 0.99870
or so. The BP NN method has precision values ranging from
0.95979 to 0.99849 or so. For the K-NN, RW, Naive Bayes, RBF
NN, and SVM methods, the precision value has big drops under
different traffic types. The maximum precision improvement of our
proposed method is 0.03 over BP NN, 0.10 over K-NN, 0.06 over

Table 4 Comparison of traffic classification methods in terms of OA
Classification method Proposed BP NN K-NN RW N. Bayes RBF NN SVM
OA, % 99.75 96.86 92.1 95.34 88.86 94.63 96.16
OA gain, % — 2.89 7.65 4.41 10.89 5.12 3.59

 

Table 5 Comparison of traffic classification methods in terms of accuracy (%)
Classification method Video based

on http
PPstream

video
QQ video Sopcast

video
CCTV

online video
Xunlei
video

Youku video
(SD)

Youku video
(HD)

proposed 99.971 99.941 99.971 99.961 99.946 99.961 99.951 99.950
BP NN 99.453 98.957 99.498 99.130 99.050 88.667 99.034 99.111
K-NN 98.469 97.556 98.259 98.181 97.621 97.620 97.755 97.768
RW 99.342 98.508 99.201 98.760 98.322 98.871 98.634 98.560
Naive Bayes 97.567 96.537 97.635 97.057 96.606 96.617 96.792 96.900
RBF NN 99.169 98.407 99.049 98.667 98.327 98.919 98.462 98.476
SVM 99.462 98.764 99.391 98.961 98.704 99.194 98.817 98.798

 

Fig. 9  Comparison of traffic classification methods in term of recall
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RW, 0.1 over Naive Bayes, 0.05 over RBF NN, and 0.04 over
SVM.

The exact F1-measure values achieved by the seven schemes
are given in Table 7, each being the average of 50 experiments.
From Table 7, we also find that our proposed method is more
effective than BP NN, K-NN, RW, Naive Bayes, RBF NN, and
SVM in terms of F1-measure performance. Our proposed method
achieves higher F1-measure values than other methods. The BP
NN F1-measure values are range from 0.95891 to 0.98062; the K-
NN F1-measure values are from 0.90902 to 0.94291; the RW
values are from 0.93507 to 0.9750; the Naive Bayes values are
from 0.87458 to 0.91502; the RBF NN values are from 0.92830 to
0.96855; and the SVM values are from 0.95178 to 0.97941. The
maximum F1-measure performance improvement achieved by our
proposed method is up to 0.03869 over BP NN, up to 0.08858 over
K-NN, up to 0.06268 over RW, up to 0.12302 over Naive Bayes,
up to 0.0697 over RBF NN, and up to 0.04816 over SVM. Our
proposed method obviously achieves better F1-measure
performance when compared with BP NN, K-NN, RW, Naive
Bayes, RBF NN, and SVM. Thus, the effectiveness of the proposed
method for multimedia traffic classification is validated with the
experiments. 

6 Conclusions
In this paper, we presented a DL-based approach with an improved
SAE model for multimedia traffic classification. Different from the
existing methods that only consider the shallow feature structure,
since they are affected by limited training data, our proposed
method can effectively extract the abstract, inherent QoS feature
structure in multimedia big data, such as the invariant deeper
features. We designed an SAE architecture, and trained the deep
network with an improved model to avoid the impact from small
amount of training data, and incorporated the fine-tuning process to
optimise the model's parameters to enhance the classification
performance. The proposed scheme was compared with six
representative existing methods, including BP NN, K-NN, RW,
Naive Bayes, RBF NN, and SVM, with traffic traces captured from
a campus network. It is shown to outperform the benchmark
schemes with respect to classification performance metrics
including overall accuracy, accuracy, recall, precision, and F1-
measure.

For future work, it is necessary to develop further studies with
regard to the development of DL methods and multimedia big data.
We shall utilise other DL models for IoT multimedia traffics
classification from QoS perspective, and to study further these
methods on different traffic datasets to evaluate their effectiveness.
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